- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dou, Wenwen (2)
-
Eltayeby, Omar (2)
-
Grace, Kazjon (2)
-
Maher, Mary Lou (2)
-
Mahzoon, Mohammad J (1)
-
Mahzoon, Mohammad Javad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mahzoon, Mohammad J; Maher, Mary Lou; Eltayeby, Omar; Dou, Wenwen; Grace, Kazjon (, Lecture notes in computer science)Many analytic tools have been developed to discover knowledge from student data. However, the knowledge discovery process requires advanced analytical modelling skills, making it the province of data scientists. This impedes the ability of educational leaders, professors, and advisors to engage with the knowledge discovery process directly. As a result, it is challenging for analysis to take advantage of domain expertise, making its outcome often neither interesting nor useful. Usually the outcome produced from such analytic tools is static, preventing domain experts from exploring different hypotheses by changing data models or predictive models inside the tool. We have developed a framework for interactive and exploratory learning analytics which begins to address these challenges. We engaged in data exploration and hypotheses generation with our university domain experts by conducting two focus groups. We used the findings of these focus groups to validate our framework, arguing that it enables domain experts to explore the data, analysis and interpretation of student data to discover useful and interesting knowledge.more » « less
An official website of the United States government
